
Prénom Nom

Operation System Project

Linux device driver for morse code

2

Student Benjamin Hadorn

Overview

 Design
 Implementation
^ Writer
^ Reader

 Conclusion

3

Student Benjamin Hadorn

Design (I)

User Level

Keyboard Device Driver

Morse Device Driver

Morse Code Reader
(Kernel Thread)

Morse Device
Writer

(Kernel Thread)
FIFO

4

Student Benjamin Hadorn

Design (II)

Writer

WriterLock

For each character

FIFOLock

waitfor_EmptySpace

wakeup_reader

Write Data to FIFO

Reader

Thread Loop

FIFOLock

waitfor_Data

wakeup_writer

Read Data from FIFO
FIFO

5

Student Benjamin Hadorn

Design (III)

AG S

 The morse code is stored as binary strings
inside a table

 The original character is used as table index
 Only one time slice is used to generate a

morse code
(3x for dashes; 1x for dots; 1x break signs; 3x break chars)

6

Student Benjamin Hadorn

Implementation (I)

struct TypeMorseDevice
{
 struct cdev cdev;
 struct task_struct* pThread;
 struct kfifo* pFifo;
 struct semaphore lockMutex;
 struct semaphore lockWriter;
 char* pcFifoBuffer;
 struct tty_driver* pTTYDriver;
};

 Device structure used for
^ Communication objects
^ device objects

7

Student Benjamin Hadorn

Implementation (II)

static struct file_operations g_Main_fops =
 {
 .write = main_write,
 .open = main_open,
 .release = main_release,
 .owner = THIS_MODULE,
 };

 The file operation structure
^ Opens and releases a connection to the FIFO

(virtual only)
^ writes data to the FIFO queue

8

Student Benjamin Hadorn

Writing data

 Only one writer can access the FIFO
 Writing data is done in 4 steps
^ 1. check if FIFO is full -> writer is suspended
^ 2. acquire the FIFO lock
^ 3. write data to the FIFO and release lock
^ 4. wake up the possible waiting reader
^ step 1 to 4 are repeated until all data is written

9

Student Benjamin Hadorn

Reading data

 Reading is in 5 steps
^ 1. check if FIFO is empty -> reader is suspended
^ 2. acquire the FIFO lock
^ 3. read data from FIFO into local variable and

release the FIFO lock
^ 4. wake up the possible waiting writer
^ 5. send the data as morse code

10

Student Benjamin Hadorn

Parameters

 Parameters of the driver
^ BlinkTime: Time slice of the morse code
^ BufferSize: Size of the buffer as exponent of 2

5 = 2^5 = 32 Bytes
^ Mo_Major: Major device number of the driver.

 Parameters can be set using the install
script

./Install.sh BufferSize=10 BlinkTime=75

11

Student Benjamin Hadorn

Conclusion

 The project gives a very good idea how
Linux driver work
^ Some simple rules to meet the needs of a

character device driver
 Very interesting project work
 How about Windows Drivers?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

